Сет Ллойд Программируя Вселенную. Квантовый компьютер и будущее науки




НазваниеСет Ллойд Программируя Вселенную. Квантовый компьютер и будущее науки
страница8/22
к русскому изданию
Дата конвертации13.02.2016
Размер2.7 Mb.
ТипДокументы
источникhttp://www.rait.airclima.ru/books/Programming_Universe.doc
1   ...   4   5   6   7   8   9   10   11   ...   22

Принцип Ландауэра



Второе начало термодинамики гласит, что общая сумма информации никогда не уменьшается. Для нашего воздушного шарика это значит, что количество битов информации, записанной атомами гелия, не станет меньше, если воздушный шарик останется в состоянии покоя. Конечно, если мы охладим воздушный шарик, сожмем или проткнем его, количество битов, хранимых атомами гелия в нем, может уменьшиться – но только за счет увеличения числа битов, записанных атомами воздуха, окружающими воздушный шарик.

Информацию можно создать, но невозможно уничтожить. Воздействием на бит его значение можно инвертировать, то есть заменить противоположным или заставить бит «переключиться». Информация при этом трансформируется: 0 превращается в 1 и наоборот. И в то же время она сохраняется: если мы знаем, что до воздействия значение бита было 0, то мы знаем, что после «щелчка» его значение будет 1.

Существует, конечно, и стирание – это процесс, который уничтожает информацию. В процессе стирания бит с первоначальным значением 0 остается нулем, а бит со значением 1 превращается в 0. Стирание разрушает информацию, имевшуюся в этом бите. Но законы физики не допускают существования процесса, который просто стирает биты, и ничего больше. Любой процесс, который стирает бит в одном месте, должен перенести то же самое количество информации в какое-то другое место. Это называется принципом Ландауэра, по имени Рольфа Ландауэра, пионера физики информации, который и обнаружил его в начале 1960-х гг.

Чтобы увидеть принцип Ландауэра в действии, давайте посмотрим, как биты стираются в компьютерах. Как мы говорили во второй главе, в современном электронном компьютере биты хранятся в конденсаторе. Конденсатор – это ведро для электронов. Когда мы заряжаем конденсатор, то помещаем электроны в ведро; когда мы разряжаем его, то извлекаем электроны из ведра. В компьютере незаряженный конденсатор хранит 0, а заряженный конденсатор хранит 1.

Чтобы стереть бит в электронном компьютере, достаточно «вытряхнуть» ведро: замкнуть выключатель и позволить электронам, находящимся в конденсаторе, из него выйти. Если конденсатор разряжен, ведро пустое, и наш бит теперь имеет значение 0. Но теперь микросостояние электронов «помнит», был ли заряжен конденсатор или нет: выходя из конденсатора, электроны нагреваются! Такое изменение температуры остается указателем на начальное состояние конденсатора. Бит информации превратился в микроскопическое движение электронов.

Другой способ стереть бит состоит в том, чтобы поменять его с другим битом, имеющим значение 0. Однако передача информации между битами сохраняет ее: чтобы вернуть первоначальные значения битов, достаточно просто снова поменять их местами. В начале первый бит может иметь значение 0 или 1, и поэтому у него есть бит энтропии. Второй бит имеет значение 0; у него нет никакой энтропии. После того как биты поменялись местами, значение первого будет 0: либо он сохранил 0, либо была стерта 1. Но теперь второй имеет значение 0 или 1: у него есть бит энтропии – той же самой энтропии, которую имел первый бит в начале. Когда биты меняются местами, информации и энтропия перемещаются из одного места в другое, но общее количество информации остается постоянным. Такую передачу информации можно использовать для того, чтобы стереть бит в одном регистре, сохраняя копию бита в другом регистре. Возвращаясь к примеру конденсатора в компьютере, отметим, что разрядка, или стирание его бита, по сути, «заменяет» информацию, записанную в конденсаторе, информацией, запечатленной электронами.

Законы физики сохраняют информацию в процессе ее преобразования. На языке математики динамические законы физики для замкнутых физических систем гласят, что каждое исходное состояние переходит в одно и только одно результирующее состояние, а каждое результирующее состояние может возникнуть из одного и только одного исходного состояния . Таким образом, можно вернуться назад: если нам известно нынешнее физическое состояние системы, то, в принципе, следуя физической динамике этой системы, можно определить ее состояние в более ранний или в более поздний момент.

Например, если нам известно точное состояние атомов газа гелия в воздушном шарике в один момент времени и мы можем в деталях проследить динамику атомов, сталкивающихся друг с другом и с внутренней стороной оболочки воздушного шарика, то благодаря тому, что каждое состояние динамически развивается в полностью определенное следующее состояние, мы будем знать состояние атомов гелия в более поздние моменты времени. И наоборот, из-за того, что каждое состояние развивается из полностью определенного состояния, если нам известно состояние в настоящий момент и мы можем в деталях проследить динамику событий, можем определить и состояние в предыдущие моменты времени. Пусть состояние бита изменяется на противоположное, если мы знаем, каким оно было перед инверсией, то узнаем и то, каким оно будет после инверсии. Физическая динамика сохраняет информацию.

Именно это сохранение не позволяет тепловым механизмам, например паровым машинам или автомобильным двигателям, извлекать из теплоты всю энергию. В горячем газе много энергии, но и много битов; температура газа пропорциональна средней энергии на бит. В горячем газе больше энергии на бит, в холодном – меньше. Когда мы извлекаем тепловую энергию газа, например если этот газ давит на поршень, биты остаются. Движущийся поршень превращает тепловую энергию в механическую, количество энергии на атом (и следовательно, на бит) падает, и расширяющийся газ остывает. Пока температура газа не достигла абсолютного нуля, каждый атом (и, следовательно, каждый из его битов) все еще требует некоторой энергии. Это количество энергии остается в газе и не может перейти в механическую энергию. Так как некоторая энергия должна остаться, не вся энергия может быть извлечена в форме работы.

Веками изощренные изобретатели пытались придумать машину, которая могла бы извлекать больше энергии, чем это возможно в соответствии с данным объяснением. При этом они и по сей день пытаются игнорировать второе начало термодинамики. Такую машину традиционно называют perpetuum mobile , вечным двигателем21. Как можно догадаться, создать ее невозможно, потому что она не в состоянии предоставить дополнительную информацию. Может показаться, что после столетий бесплодных усилий люди должны были разочароваться в идее вечного двигателя. Но за последние пятнадцать лет меня много раз просили оценить предложения изобретателей, пытавшихся извлечь из физических систем больше энергии, чем позволяет второе начало термодинамики. Все эти предложения были неудачными. Со временем я так натренировался, что мог взять самый сложный чертеж подобной машины и тут же сказать, где изобретатель «замел информацию под коврик».

Распространение неведения



Законы физики сохраняют информацию. Количество битов, записанных системой (например, воздушным шариком с гелием), не уменьшается. Такое сохранение информации ограничивает эффективность тепловых машин и одновременно отвечает за второе начало термодинамики. Но здесь есть проблема. Согласно законам физики, общее количество информации не может также и увеличиваться . По существу, они гласят, что при отсутствии взаимодействия с другой системой количество информации в системе остается тем же. Но как же энтропия – а это форма информации – может увеличиваться, если при этом не увеличивается суммарное информационное содержание физической системы? Как может быть, что известная информация становятся неизвестной?

В первоначальном виде энтропия рассматривалась как величина, измеряющая, насколько полезна энергия. Энергия с небольшим количеством энтропии – это полезная (свободная) энергия; энергия с большим количеством энтропии бесполезна. Возможно, легче понять увеличение энтропии в такой формулировке: энергия переходит из полезной формы в бесполезную. Горячая ванна остывает. В автомобиле заканчивается бензин. Молоко скисает. Как можно рассмотреть этот процесс с точки зрения информации? Ответ заключается в фундаментальном свойстве природы, который я называю «распространением неведения». Можно сказать, что неизвестные биты заражают известные.

Мы видели, что энтропия – это информация о микроскопических движениях атомов, таких крошечных, что мы не можем увидеть их даже под самым мощным микроскопом. Каждый атом гелия в нашем воздушном шарике содержит двадцать битов. Но если мы не знаем, где находится отдельный атом в воздушном шарике и как быстро он движется (с точностью, позволенной квантовой механикой), то понятия не имеем, что это за биты. Другими словами, энтропия – невидимая информация – является также мерой неведения.

Кое-какая информация об атомах в воздушном шарике у нас, конечно, есть. Например, мы можем измерить его макроскопическое состояние: размер, температуру, давление, которое атомы гелия оказывают на его стенки. Обычно у нас есть только несколько сотен битов макроскопической информации о физической системе, например о воздушном шарике. Для любой системы можно провести различие между битами, значения которых (0 или 1) мы знаем, и теми, значений которых мы не знаем. Биты, значений которых мы не знаем, составляют энтропию системы: бит энтропии – это бит неведения.

Обратите внимание, что разделение информации на известную и неизвестную до некоторой степени субъективно. Разные люди знают разные вещи. Допустим, например, вы отправили мне короткое электронное письмо, содержащее 100 битов информации. Вы знаете, что это за биты, ведь это вы их отправили. Для вас информация этого электронного письма известна. Пока я не открою это письмо, я не знаю, что это за биты: для меня они все еще невидимы, и на этой стадии я бы посчитал эти 100 битов энтропией. Поэтому разные наблюдатели могут придавать разное значение энтропии системы. Помните демона Максвелла? Он контролирует микроскопические состояния газа, и у него больше информации, чем у наблюдателя, который просто знает температуру и давление газа. Соответственно, для демона в газе меньше энтропии, чем для стороннего наблюдателя. Для целей второго начала термодинамики важно общее количество информации в физической системе. Общее количество информации в физической системе, известной и неизвестной, не зависит от того, кто и как наблюдает за ней.

Предположим, неизвестный бит информации взаимодействует с известным битом информации. После этого взаимодействия первый бит по-прежнему остается неизвестным, но теперь и второй бит тоже становится неизвестным. Неизвестный бит как бы заразил известный, распространяя неведение и увеличивая общую энтропию системы. Идеи вычисления, о которых мы говорили выше, можно использовать для того, чтобы прояснить «заразную» природу неведения.

Возьмем два бита. Значение первого неизвестно – оно может быть или 0, или 1. Значение второго бита известно – скажем, это 0. Таким образом, оба бита вместе находятся в состоянии 00 или 10. Теперь применим к битам следующую простую логическую операцию. Инвертируем второй бит, но если и только если первый бит равен 1. Эту операцию можно назвать «условное не» (controlled-not ), потому что она выполняет инверсию (или операцию «не») со вторым битом, используя как сигнал управления состояние первого бита (который в данном случае неизвестен).

Итак, если первый бит будет равен 1, то операция «условное не» изменит второй бит с 0 на 1. Если значение первого бита – 0, то после операции «условное не» значение второго бита останется равным 0. Таким образом, после операции «условное не» пара битов будет или в состоянии 00, или в состоянии 11. Теперь два бита коррелируют – то есть имеют одно и то же значение. Если мы посмотрим на первый бит, то узнаем значение второго бита, и наоборот.

Мы как не знали значение первого бита, так и не знаем его после выполнения операции: он по-прежнему находится в состоянии 0 или в состоянии 1. Но посмотрим на второй бит. Теперь он тоже может находиться в состоянии 0 или 1. Второй бит, значение которого до операции было 0, теперь тоже имеет неизвестное значение. Операция «условное не» заставила неизвестную информацию первого бита «заразить» второй бит – незнание распространилось! (Распространение неведения обратимо. Чтобы вернуть оба бита в исходное состояние, нужно выполнить операцию «условное не» повторно. Операция «условное не» является обратной по отношению к самой себе: выполнить ее дважды – все равно что не делать ничего вообще.)

Распространение неведения увеличивает энтропию отдельных битов в системе. Энтропия первого бита по-прежнему составляет один бит, но энтропия второго увеличивается. Тем не менее энтропия пары битов, взятых вместе, остается постоянной! Перед операцией «условное не» два бита могли находиться в одном из двух состояний – 00 или 10. В системе один бит энтропии – в первом бите из пары. После операции «условное не» пара битов может находиться в одном из двух состояний – 00 или 11. Мы по-прежнему видим один бит энтропии, но теперь он распределен между двумя битами.

Распространение неведения отражается в росте величины, которая называется «взаимная информация». У каждого бита после операции есть собственный бит энтропии, но у двух битов, взятых вместе, тоже есть только один бит энтропии. Взаимная информация равняется сумме энтропий, взятых по отдельности, минус энтропия двух битов, взятых вместе. Другими словами, у двух битов есть ровно один бит взаимной информации. Какую бы информацию они ни содержали, они содержат ее вместе.

Неведение атомов



«Заразный» характер информации относится и к сталкивающимся атомам, и к битам в вычислении. Идею о том, что энтропия отдельных атомов газа имеет тенденцию увеличиваться, впервые выдвинул Людвиг Больцман в 1880-х гг. Больцман определил величину, которую назвал «H », как степень, до которой мы знаем положение и скорость любого данного атома газа.

Величина «H » Больцмана фактически является энтропией отдельного атома, умноженного на минус один. Больцман показал, что, когда положения и скорости атомов не коррелирует, то есть независимы друг от друга, столкновения между ними уменьшают «H » и увеличивают энтропию отдельных атомов. Последующие столкновения, утверждал он, продолжат увеличивать эту энтропию. Он пришел к выводу, что его H -теорема является обоснованием второго начала термодинамики и доказывает математически, что энтропия должна увеличиваться.

Проблема H -теоремы Больцмана состоит в том, что она, строго говоря, не является истинной для атомов газа. Больцман был прав в том, что столкновения между первоначально некоррелирующими атомами увеличивают энтропии отдельных атомов. Эти энтропии увеличиваются из-за «заразного» характера информации. Когда сталкиваются два атома, любая неопределенность по поводу положения и скорости первого атома имеет тенденцию «заражать» второй атом, делая его положение и скорость более неопределенными и тем самым увеличивая его энтропию. Такое увеличение энтропии второго атома похоже на увеличение энтропии второго бита, описанного выше, когда этот бит был подвергнут операцией «условное не», где неизвестный бит выступал в роли управляющего.

Ошибка H -теоремы связана с последующими столкновениями атомов. Если два атома столкнулись и обменялись информацией, последующие столкновения могут уменьшить энтропию отдельных атомов. Чтобы понять, как взаимодействие между двумя атомами, которые сталкивались раньше, может уменьшить их энтропию, вернитесь к паре битов, которую мы обсуждали выше. При первом применении операции «условное не» энтропия управляющего бита заразила второй бит, увеличив его энтропию на один бит. Но если операцию «условное не» применить снова, второй бит восстанавливает свое первоначальное, известное состояние, уменьшая свою энтропию на один бит.

В принципе, похожую обратную операцию, результатом которой будет аналогичное уменьшение энтропии, можно придумать и для атомов. Когда Больцман представил свою H -теорему как доказательство второго начала термодинамики, его коллега Йозеф Лошмидт указал, что H -теорема не может быть всегда истинной, ведь обращением скоростей атомов можно «взять назад» их столкновение и уменьшить их энтропии. (Гипотетическое существо, которое могло бы изменить скорости атомов на противоположные, называют демоном Лошмидта. В те времена у всех были свои демоны.) Услышав этот (правильный) аргумент, Больцман был вынужден прибегнуть к сарказму: «Валяйте, обратите их».

Первоначальный довод Больцмана в пользу его H -теоремы был основан на предположении о природе столкновений атомов, получившем название «гипотезы молекулярного хаоса». Даже если положения и скорости двух атомов могли бы иметь корреляцию до их столкновения, утверждал Больцман, многократные столкновения между многими атомами должны ослаблять эту корреляцию, и, в сущности, два сталкивающихся атома газа не должны быть коррелированными в момент столкновения. Сразу после столкновения положения и скорости двух атомов коррелируют. Но поскольку они продолжают сталкиваться с другими атомами, их корреляция друг с другом должна ослабевать. Больцман утверждал, что к моменту следующего столкновения эти два атома можно рассматривать как не имеющие корреляции, то есть как будто они никогда не сталкивались раньше. Если предположение о молекулярном хаосе справедливо, то энтропии отдельных атомов почти всегда увеличиваются. Это увеличение можно в принципе отменить, если обратить процесс столкновения, а-ля Лошмидт. Но на практике такое обращение происходит редко.

Гипотеза молекулярного хаоса – хорошая гипотеза, она верна для многих сложных систем, например для газов. Но она не является истинной для всех физических систем. Как мы увидим, во многих физических системах можно обратить взаимодействия между частями системы, тем самым отменяя увеличение энтропии этих частей.

Но в целом предположение Больцмана работает хорошо. Даже после того как атомы столкнулись один раз, их последующие столкновения имеют тенденцию увеличивать энтропии каждого из них. Почему гипотеза молекулярного хаоса так хорошо работает? В своей магистерской работе «Распространение неведения» и диссертации доктора философии «Черные дыры, демоны и утрата когерентности» я ответил на этот вопрос, предложив подход к объяснению второго начала термодинамики через распространение неведения. Этот метод показывает, что H-теорема Больцмана «почти истинна» для «почти всех» физических систем.

Снукер



Пожалуй, надо немного рассказать о том, как формировался мой подход к теме. Окончив Гарвард, я поступил в Кембриджский университет, получив стипендию Маршалла. Эти стипендии дает британское правительство в благодарность за американский план Маршалла, который помог восстановить Европу после Второй мировой войны. (Однако дальше стипендий эта благодарность не распространяется. В самый первый день в Кембридже я зашел в паб под названием «Локомотив». У парня, сидевшего рядом со мной за стойкой, был зеленый «ирокез» и ошейник. Когда я сказал ему, что его правительство платит за то, чтобы я, американец, учился в Кембридже, он весьма неблагодарно настоял на том, чтобы я покинул помещение.) Первый год в Кембридже я провел, слушая спецкурс по математике и физике под названием «Part III Maths», одна из целей которого состоит в том, чтобы выявлять перспективных ученых и избавляться от остальных. Студенты, которые получают лучшие оценки по Part III, потом, как правило, переходят к написанию диссертации. Самых лучших студентов в Кембридже называют «ковбоями». Максвелл, например, был типичным «ковбоем». Что касается остальных – ну, наградой для худшего студента по окончании курса была деревянная ложка в четыре фута длиной.

Чтобы стать «ковбоем», нужно было прилагать неимоверное количество усилий. Многие из моих сокурсников буквально дневали и ночевали в библиотеке в течение всего курса. Что-то личное в них можно было увидеть только после диплома. О веселой студенческой жизни в Кембридже я только читал – в романах Э. М. Форстера и поэмах Уилфреда Оуэна. Конечно, я хотел избежать наказания ложкой, но если и существовала область физики, которая меня интересовала, то это было взаимодействие между механикой и динамикой жидкости, проявляющееся в соревнованиях по гребле на мужских восьмерках или в путешествиях на лодке в Грантчестер. После утренних лекций я шел в паб у реки, вниз от здания факультета прикладной математики и теоретической физики, чтобы съесть корнуоллского мясного пирога и выпить пинту Гиннеса. Затем я направлялся в гребной клуб или в общежитие, чтобы сыграть пару партий в снукер.

Снукер – игра, похожая на бильярд. В нее тоже играют киями и шарами, но игровой стол намного больше бильярдного. Длина кия позволяет дотянуться до дальнего конца стола, и его вполне можно использовать для прыжков с шестом. Снукер имеет нечто общее с крикетом, боулингом на траве и выпасом овец, и это – классическая черта британские спортивных телепрограмм: большое зеленое пространство, по которому разбросаны маленькие объекты (люди, шары, овцы). Цель снукера, как и бильярда, состоит в том, чтобы загонять шары в лузы. Эта процедура называется поттинг. Но в снукере, в отличие от бильярда, нужно выбирать между шарами разного цвета: желтыми, синими, розовыми и черными.

Снукер прекрасно иллюстрирует тайну увеличения энтропии. Столкновение двух шаров для снукера в пространстве двух измерений содержит почти все элементы столкновения между двумя атомами гелия в трехмерном пространстве. В начале игры шары находятся в определенных позициях и имеют нулевую скорость: у них очень небольшая энтропия. После нескольких ударов они распределяются по всему столу, причем их положение зависит от истории столкновений между шарами и от небольших вариаций в том, как по ним ударили кием. Неопределенность, связанная с ударом кием по битку (белому шару), – несколько битов неизвестной информации – заражает все шары, с которыми затем сталкивается биток.

В начале XX в. Эмиль Борель (автор идеи о печатающих обезьянах) предположил, что увеличение энтропии может являться результатом взаимодействий между системами, распространяющими информацию вокруг себя. Взяв это замечание Бореля за исходное, в своей диссертации я показал, что взаимодействия между частями системы, например атомами газа или шарами на столе для снукера, имеют тенденцию увеличивать энтропии этих частей, даже если они взаимодействовали раньше. Этот результат подтверждает гипотезу молекулярного хаоса Больцмана, ведь он показывает, что столкновение между двумя атомами почти всегда будет увеличивать их энтропию, даже если эти атомы сталкивались раньше. В итоге энтропии отдельных частей системы, например газа, имеют тенденцию увеличиваться до максимального возможного значения.

Сталкиваясь друг с другом, атомы обмениваются информацией и распространяют энтропию. Любое незнание о состоянии одного атома распространяется на состояние другого. Распространение неведения также знакомо игрокам в снукер, где действуют те же самые правила. Биток передает часть своей скорости (а значит, и некоторые из своих битов) красному шару. Красный шар ударяется о розовый шар, распространяя некоторые из своих битов, включая и те, которые он получил от битка, на скорость розового шара. По мере того как происходят новые столкновения, количество битов неведения, распределенное между шарами, растет, до тех пор пока биты (и шары) не распространятся по всему столу. Биты заразны.





Особенно интересный случай такого процесса заражения битами возникает, когда часть информации о системе является макроскопической (то есть информацией, к которой мы можем получить доступ напрямую, с помощью наблюдений и измерений), а остальная информация микроскопическая, «невидимая» (иначе говоря, энтропия). Можно ожидать, что со временем микроскопическая, скрытая информация, начнет заражать макроскопическую, видимую. В конечном счете информация и энтропия битов всей системы достигнет максимально возможных значений.

Такое заражение макроскопических битов микроскопическими – особенность хаоса. Мы помним, что хаотическая система – та динамика, которая имеет тенденцию усиливать небольшие отклонения, отчего микроскопическая информация перекачивается на макроскопический уровень. В хаотической системе невидимая информация, находящаяся в микроскопических битах, заражает макроскопические биты, заставляя видимые характеристики системы изменяться непредсказуемым образом, – точно так же, как эффект бабочки влияет на траекторию движения урагана.

Столкновение шаров для снукера – тоже хаотический процесс. Предположим, вы немного ошиблись, когда били по первому шару, и начальная скорость и направление движения битка оказались не совсем такие, как вы хотели. Эта ошибка усилится, когда биток ударит по красному шару. В направлении, в котором теперь движется красный шар, будет более заметная ошибка, чем ошибка в начальной скорости и направлении битка. Чем больше столкновений, тем больше усиливается начальная ошибка. Если вы планировали ударить красным шаром по розовому шару и забить этим шаром третий шар в лузу, вам это вряд ли удастся: к третьему столкновению, как правило, начальная ошибка увеличится настолько, что задать подходящую скорость и направление движения последнего шара не получится совсем.

Неведение распространяется, энтропия отдельных элементов системы растет. При таком взгляде на второе начало термодинамики увеличение энтропии похоже на эпидемию. Биты неведения – словно вирусы, которые копируются и распространяются в процессе взаимодействия. Заражение продолжается до тех пор, пока все элементы системы не будут инфицированы. В этот момент энтропии частей системы, взятые по отдельности, будут близки к своему максимальному значению.

Эффект спинового эха



Когда Йозеф Лошмидт предположил, что можно уменьшить энтропию газа, одновременно обратив скорости всех его атомов, Больцман над ним посмеялся. Но, как мы сейчас увидим, идею Лошмидта можно реализовать в реальных физических системах. В таких системах, как может показаться, энтропия уменьшается, нарушая второе начало термодинамики (хотя на самом деле это не так).

Что произойдет, если изменить направления движения компонентов системы на противоположные? За счет взаимодействия между частями системы все ходы сами собой окажутся «взяты назад», а энтропии уменьшатся. Конечно, первоначальное предложение Лошмидта – обратить скорости атомов газа – невыполнимо на практике. Но для некоторых систем лозунг Больцмана «обратить движение вспять» можно реализовать.

Простой пример такой обратимой динамики – операция «условное не», описанная выше. В этой очень простой логической операции инвертируется один бит в том и только том случае, если значение управляющего бита 1. Как мы уже говорили, если начальное значение второго бита 0, а значение управляющего бита может быть или 0, или 1, то после операции значение обоих битов будет или 0, или 1. Операция «условное не» заставляет второй бит, сначала имевший нуль битов энтропии, подстроиться под состояние первого бита так, что энтропия второго бита в новом состоянии составит один бит. Неведение первого бита заражает второй, и его энтропия увеличивается.

Чтобы взять назад операцию «условное не», нужно просто выполнить ее во второй раз. После первой операции значение обоих битов будет или 0, или 1. Во время второй операции, если значение управляющего бита равно 0, то значение второго бита останется 0, а если значение управляющего бита 1, то второй бит изменит свое состояние с 1 на 0. В любом случае вторая операция отменит первую и вернет второму биту значение 0. В результате энтропия этого бита уменьшится от одного до нуля битов.





Другое применение предложения Лошмидта – эффект спинового эха. Чтобы понять, что это такое, рассмотрим следующую макроскопическую аналогию. Бегуны выстраиваются в ряд у линии старта. Звучит стартовый выстрел, и они срываются с места. Но бегут они с разной скоростью, причем некоторые по внутренним дорожкам, а некоторые по внешним, так что через несколько кругов бегуны распределятся по всему пространству трека. Через десять минут звучит второй выстрел. Услышав его звук, бегуны разворачиваются и начинают бежать в противоположном направлении. Если все они бегут с той же скоростью, что и раньше, то постепенно начинают сходиться в одном месте трека, а расстояния между ними уменьшаются. Через десять минут все вместе они окажутся на линии старта.

В эффекте спинового эха бегуны – это ядерные спины22. Протоны и нейтроны, из которых состоят ядра атомов, вращаются, как небольшие волчки. Спин традиционно описывают словами «вверх» или «вниз», в зависимости от направления вращения: если вы представите себе лежащие на столе наручные часы, то вращение «вверх» будет против часовой стрелки, а вращение «вниз» – по часовой. Есть другой удобный способ запомнить, что такое спин «вверх» и спин «вниз»: согните пальцы правой руки в том направлении, в котором вращается протон или нейтрон. Тогда большой палец будет направлен вдоль оси вращения, а его направление будет определять «направление» спина – «вверх» или «вниз»23.

Возьмем несколько протонов, которые первоначально вращаются в одном и том же направлении. Раз их вращения известны, энтропия каждого равна нулю. Теперь подадим импульс микроволнового излучения и заставим все протонные спины прецессировать. (Прецессия – это «блуждание» оси, которое демонстрирует косо стоящий волчок под воздействием силы тяжести24. Ядерные спины похожи на небольшие волчки, ось которых отклоняется от начального положения под влиянием силы магнетизма.) Каждый спин прецессирует со своей скоростью, немного отличной от скорости других, и скоро спины наших протонов указывают во всех направлениях, как бегуны, распределившиеся по всему треку. Скорость прецессии каждого спина определяется его локальным магнитным полем; эта скорость является «невидимой» информацией, недоступной макроскопическому наблюдателю. Так как направления, в которых указывают спины, теперь неизвестны, спины сами по себе теперь обладают высокой, почти максимальной энтропией. Она равна числу битов, необходимых для указания текущих направлений спинов (то есть «вверх» или «вниз») с точностью, позволенной квантовой механикой.

Увеличение энтропии отдельных спинов – пример увеличения энтропии в процессе распространения информации. Прецессирующие спины «заразились» информацией в локальном магнитном поле. Если бы мы обладали этой информацией, то могли бы узнать, в каких направлениях указывают спины. Но у нас нет такой информации, и, так как спины начинают коррелировать с магнитным полем, энтропия каждого из них увеличивается.

Теперь устроим спиновое эхо. Включаем второй микроволновой импульс, который инвертирует углы прецессии, к примеру угол +60° превращается в –60°. Теперь каждый спин продолжает прецессировать, но при этом «отыгрывает назад» угол, набранный ранее. Через такое же время, которое потребовалось, чтобы спины стали неизвестными, они снова будут указывать в одном и том же направлении. Их энтропия вновь уменьшилась до нуля!

Эффект спинового эха впервые был продемонстрирован в эксперименте пятьдесят лет назад25. Есть и более сложные аналоги концепции Лошмидта, но все они сводятся к одной и той же процедуре. Если вы достаточно квалифицированный экспериментатор и Больцман говорит: «Обратите их», вы сможете это сделать!

Почему же эффект спинового эха не нарушает второго начала термодинамики, которое гласит, что увеличение энтропии невозможно отменить? В случае эффекта спинового эха только кажется, что на первом этапе эксперимента энтропия увеличивается. Хотя энтропия спинов, взятых по отдельности, увеличивается, а затем уменьшается в период действия «эха», энтропия спинов, взятых вместе с магнитным полем , остается неизменной.

Изгнание демона Максвелла



Есть и второй способ уменьшить энтропию. Как мы помним, энтропия – это информация, которая неизвестна (то есть невидима). Что происходит, когда неизвестная раньше информация становится известной, когда невидимое становится видимым? Что происходит, когда мы получаем информацию? Очевидно, энтропия уменьшается.

Этот способ уменьшения энтропии впервые придумал Джеймс Клерк Максвелл, демон которого получает информацию о микроскопическом состоянии газа и поэтому может уменьшить его энтропию. Было сделано множество попыток изгнать демона Максвелла, но все они оставались безуспешными до последнего времени. (Я сам принял участие в этом акте экзорцизма.) Несмотря на путаницу, которую сеял демон Максвелла все эти годы, окончательное решение оказалось на удивление простое: фундаментальные законы физики сохраняют информацию. Поэтому общая информация/энтропия газа и демона, взятых вместе, уменьшиться не может.

На практике это простое решение требует большой деликатности. Ниже я представлю полную квантово-механическую модель демона Максвелла, которая объясняет, как демон получает информацию и делает свое дело. Пока давайте рассмотрим простую модель битов, подобную той, о которой мы уже говорили. Возьмем два бита. Значение первого бита, соответствующего демону, сначала будет 0. Значение второго бита, соответствующего газу, может быть или 0 или 1. Сначала у демона нет никаких битов энтропии, а у газа есть один бит энтропии.

Первый шаг в процессе извлечения энтропии – когда бит демона получает информацию о бите газа. Для этого можно выполнить операцию «условное не» с битом демона, где бит газа является управляющим. Эта операция инвертирует бит демона в том и только том случае, если значение бита газа 1. Следовательно, после операции значение бита демона станет тем же, что и значение бита газа – или 0, или 1. Таким образом, у бита демона и бита газа теперь есть один бит взаимной информации. Можно сказать, что бит демона измерил состояние бита газа, чтобы получить эту взаимную информацию.

Второй шаг процесса – попросить демона уменьшить энтропию газа. Демон может сделать это, выполнив операцию «условное не» с битом газа, используя свой собственный бит в качестве управляющего. Так как значения обоих битов одинаковы, вторая операция даст биту газа значение 0. Действительно, если значение бита демона 0, то он оставит бит газа в состоянии 0. Если значение бита демона 1, он инвертирует бит газа из 1 в 0. В любом случае бит газа теперь находится в известном состоянии 0 и имеет нуль битов энтропии. Демон уменьшил энтропию газа на один бит.

Теперь ситуация будет следующей. Бит газа находится в состоянии 0. Бит демона 0, если бит газа сначала был в состоянии 0, и 1, если бит газа сначала был в состоянии 1. Две операции «условное не» с разными управляющими битами фактически поменяли начальный бит демона с начальным битом газа. Энтропия газа уменьшилась на один бит, но общая сумма информации газа и демона, взятых вместе, осталась неизменной. Демон не нарушает второго начала термодинамики!

Обратите внимание, что передача информации от газа к демону происходит в соответствии с принципом Ландауэра, приведенным выше. Цель демона – «стереть» бит газа, установив его значение в 0. Но фундаментальные законы физики сохраняют информацию, и поэтому демон может свести значение бита газа к 0, только передав информацию от бита газа к своему собственному биту. Общее количество информации остается неизменным.

В статье о демоне Максвелла, опубликованной в журнале Scientific American , Чарльз Беннетт из IBM показал, как принцип Ландауэра не позволяет демону нарушить второе начало термодинамики, извлекая работу из одночастичного газа26. В последующей работе, опубликованной в Physical Review , я показал, что этот довод относится не только к системам битов, но и ко всем физическим системам – тепловым машинам, ураганам и чему угодно еще27. Физическую динамику можно использовать для того, чтобы получать информацию, и эту информацию можно использовать для того, чтобы уменьшить энтропию конкретного элемента системы, но общая сумма информации/энтропии при этом не уменьшится. (Читатель, которого интересует демонология, может ознакомиться с двумя сборниками статей под редакцией Харви Леффа и Эндрю Рекса о демоне Максвелла28.)

Если решение проблемы демона Максвелла опирается на фундамент физического закона, требующего сохранения информации, то почему эта проблема создала такую путаницу в последние полтора столетия? Потому что она связана с различиями между информацией и энтропией. Как мы помним, энтропия – это невидимая информация, или «неведение», и она нам недоступна. Но различие между «видимым» и «невидимым» зависит от того, кто является наблюдателем. Поэтому можно уменьшить энтропию системы, просто наблюдая за ней.

Чтобы увидеть, как проявляется различие между видимой и невидимой информацией в случае демона Максвелла, давайте сравним точку зрения демона с точкой зрения стороннего наблюдателя. Наблюдатель, как и демон, знает, что значение бита демона сначала было равно 0, но не знает начального значения бита газа. В отличие от демона, наблюдатель не может следить за результатами выполнения цепочки операций «условное не». Он только знает, что эти операции имеют место. Таким образом, и наблюдатель, и демон согласны друг с другом относительно динамики взаимодействия между битом демона и битом газа, но граница между видимым и невидимым проходит для них в разных местах. В частности, бит демона после первой операции известен демону, но не наблюдателю.

Перед первой операцией и демон, и внешний наблюдатель знают, что энтропия бита демона равна нулю (его состояние известно), а энтропия бита газа равна единице (два возможных состояния). После первой операции бит демона полностью коррелирует с состоянием бита газа. Это значит, что теперь демон «знает», каково значение бита газа. Точнее, если говорить о демоне, для него энтропия бита газа равна нулю, поскольку она обусловлена состоянием бита демона после операции, а это состояние демону известно. Информация в бите газа раньше была невидимой для демона, а теперь стала видимой. С точки зрения демона энтропия уменьшилась на один бит, а видимая информация увеличилась на один бит.

Но что известно наблюдателю? После первой операции наблюдатель знает, что бит демона и бит газа в точности коррелируют. Их значения – или 00, или 11, но наблюдатель не знает, какие именно. Соответственно, наблюдатель считает, что бит демона и бит газа вместе взятые имеют энтропию в один бит. Поскольку информация, содержащаяся в газе и в демоне, остается для наблюдателя невидимой, он считает, что энтропия остается постоянной и составляет один бит.

После второй операции «условное не» бит, который первоначально находился в газе, перешел к демону. И демон, и наблюдатель знают, что состояние бита газа теперь равно 0. Демону его собственный бит известен: он хранит один бит информации, а энтропия равна нулю. Наблюдателю бит демона невидим, и поэтому для него энтропия составляет один бит. При этом и демон, и наблюдатель согласны, что общая сумма информации составляет один бит. Второе начало термодинамики относится к общей сумме информации, известной и неизвестной.

Остановим пока демона Максвелла и дискуссию об увеличении и уменьшении энтропии. Главное, как показали в конце XIX в. специалисты по статистической механике, мир состоит из битов. Второе начало термодинамики – это утверждение об обработке информации: фундаментальная физическая динамика Вселенной сохраняет биты и препятствует уменьшению их количества. Чтобы как следует понять эту физическую динамику, нужно обратиться к квантовой механике, которая описывает, как физические системы ведут себя на самом фундаментальном уровне. Но прежде чем заняться квантовой механикой, давайте кратко рассмотрим, как способны обрабатывать информацию классические системы, такие как атомы газа или шары на столе для игры в снукер.

Атомное вычисление



В положении и скорости атома газа содержится информация. Именно положения и скорости атомов были самыми первыми величинами, к которым были применены базовые формулы информации. Атомы хранят биты.

Но как обрабатывается эта информация? Когда сталкиваются два атома газа, информация, которую они содержат, преобразуется и обрабатывается. Соотносится ли обработка информации при столкновения атомов с обработкой информации, которую выполняют логические элементы, о которых мы говорили в первой части книги?

Как показали Эдвард Фредкин из Университета Карнеги-Меллона и Томмазо Тоффоли из Бостонского университета, столкновения атомов естественным образом совершают логические операции «и», «или», «не» и «копировать». На языке обработки информации столкновения атомов являются универсальными в вычислительном отношении.

В модели Фредкина и Тоффоли каждое возможное столкновение атомов выполняет операцию «и», «или», «не» и «копировать» над подходящим образом определенными входными и выходными битами. Назначая соответствующие начальные положения и скорости атомам газа, можно создать любую логическую схему. Сталкивающиеся атомы газа в принципе способны производить универсальные цифровые вычисления.

На практике, конечно, очень сложно заставить атомы газа выполнять вычисления. Даже если мы бы имели контроль над положениями и скоростями отдельных атомов, квантовая механика ограничивает точность, с которой можно одновременно указать их положение и скорость. Кроме того, столкновения между атомами газа являются неустранимо хаотическими; это значит, что даже небольшая ошибка в указании начальных положений и скоростей атомов, как правило, со временем будет увеличиваться, благодаря эффекту бабочки, пока не «загрязнит» все вычисления. Однако, как мы увидим в следующих главах, оба эти ограничения можно преодолеть, если использовать для производства вычислений более подходящие квантово-механические системы.

Хотя ограничения практического плана не позволяют использовать столкновения атомов газа для вычислений, тот факт, что столкновения атомов в принципе позволяют вести вычисления, подразумевает, что долгосрочное поведение атомов газа непредсказуемо в силу внутренних причин. Проблема остановки (см. гл. 2) мешает не только обычным компьютерам, но и любой системе, способной к выполнению цифровых логических операций. Сталкивающиеся атомы по сути своей выполняют цифровые логические операции, а потому их поведение в будущем невычислимо.

Такая способность сталкивающихся сфер к вычислениям проливает свет на возможность существования третьего демона – его вызвал к жизни маркиз Пьер-Симон де Лаплас. В труде, посвященном использованию ньютоновой механики для прогнозирования будущего поведения небесных тел, Лаплас писал:

«Мы можем рассматривать настоящее состояние Вселенной как следствие его прошлого и причину его будущего. Разум, которому в каждый определенный момент времени были бы известны все силы, приводящие природу в движение и положение всех тел, из которых она состоит, будь он также достаточно обширен, чтобы подвергнуть эти данные анализу, смог бы объять единым законом движение величайших тел Вселенной и мельчайшего атома; для такого разума ничего не было бы неясного и будущее существовало бы в его глазах точно так же, как прошлое».

Существо, способное совершать такие потрясающие предсказания, называют демоном Лапласа.

Даже если фундаментальные законы физики были бы полностью детерминистскими, вычислительная способность простых систем, например сталкивающихся сфер, подразумевает, что для такого моделирования, о котором писал Лаплас, вычисляющий демон должен обладать по крайней мере такой же вычислительной мощью, как и сама Вселенная. Поскольку, как мы увидим, способность к вычислениям требует физических ресурсов, демон Лапласа должен был бы использовать по крайней мере столько же пространства, времени и энергии, сколько и сама Вселенная.

Вторая проблема демона Лапласа состоит в том, что законы квантовой механики не являются детерминистскими в том смысле, который подразумевал Лаплас. В квантовой механике то, что происходит в будущем, можно предсказать только на уровне вероятности. На самом деле движения небесных тел являются неустранимо хаотическими, а поэтому постоянно выкачивают информацию с микроскопического на макроскопический уровень. Как будет показано в следующей главе, из-за этого космического хаоса даже небесные тела Лапласа движутся вероятностным образом, и точно их движение не может предсказать никто, даже демон.


1   ...   4   5   6   7   8   9   10   11   ...   22

Похожие:

Сет Ллойд Программируя Вселенную. Квантовый компьютер и будущее науки iconКвантовый Компьютер и его роль в физике сложных систем
На таком устройстве можно реализовать любую последовательность одно-трех кубитных (кубит квантовый бит) элементарных унитарных операций...
Сет Ллойд Программируя Вселенную. Квантовый компьютер и будущее науки iconКонференцию ман рк «Интеграция образования и науки шаг в будущее», посвященную хх-летию Республики Казахстан
Павлодарское отделение Малой Академии наук Республики Казахстан (ман рк) совместно с Инновационным Евразийским университетом проводит...
Сет Ллойд Программируя Вселенную. Квантовый компьютер и будущее науки iconИнформатика дегеніміз не?
Сабақтың тақырыбы: Информатика дегеніміз не? Компьютер – ақпарат өңдеу құралы. Компьютер өңдейтін ақпарат түрі. Компьютер – аппараттық...
Сет Ллойд Программируя Вселенную. Квантовый компьютер и будущее науки iconЕстественные науки 1 физико-математические науки 2 химические науки 6
Науки о земле (геодезические. Геофизические. Геологические и географические науки) 7
Сет Ллойд Программируя Вселенную. Квантовый компьютер и будущее науки iconОлимпиада «Будущие исследователи – будущее науки». Отборочный тур. Русский язык, 7-8 классы
...
Сет Ллойд Программируя Вселенную. Квантовый компьютер и будущее науки iconРеспублики казахстан комитет по надзору и аттестации в сфере образования и науки
А. Эйнштейн, Н. Бор, М. Борн, В. Гейзенберг, В. И. Вернадский, К. И. Сатпаев и др Концепции науки: основные подходы в философии и...
Сет Ллойд Программируя Вселенную. Квантовый компьютер и будущее науки iconКомпьютер сочиняет
Компьютер может использовать заданный объем информации и вложенный в неё запас образных выражений. Сочетание информации, образов,...
Сет Ллойд Программируя Вселенную. Квантовый компьютер и будущее науки iconВеселовский Сергей Дни студенческой науки 2004. Секция по терроризму. Доклад. Будущее антитеррористической коалиции
Ирак стал единственным арабским государством, которое отказалось осудить теракты 11 сентября 2001 года, однако при этом оно и не...
Сет Ллойд Программируя Вселенную. Квантовый компьютер и будущее науки iconПояснительная записка Обыденным делом стал компьютер в нашей жизни. Ведь на самом деле, при разумном использовании компьютер оказывается таким замечательным другом и помощником Хочется в это верить и с этими мыслями садиться за компьютер
Программа предназначена для развития творческой активности детей, обеспечивающая развитие познавательных интересов в обучении и составляющим...
Сет Ллойд Программируя Вселенную. Квантовый компьютер и будущее науки iconГлаза и компьютер
Раньше считалось, что зрение портится, если много смотреть телевизор и читать в темноте и движущемся транспорте. Теперь добавился...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©kzdocs.docdat.com 2012
обратиться к администрации
Документы
Главная страница