№3. "Фотосинтез"




Название№3. "Фотосинтез"
страница2/8
Дата конвертации06.02.2016
Размер0.83 Mb.
ТипАнализ
источникhttp://portal.vkgu.kz:1010/5580/3/3.1.doc
1   2   3   4   5   6   7   8

Для дальнейшего развития структуры пропластид необходим свет. На свету образуется хлорофилл. Молекулы хлорофилла локализуются в мембранах. Именно на свету образуются два типа тилакоидов. Длинные тилакоиды тянутся через все продольное сечение пластид и образуют тилакоиды стромы. Короткие тилакоиды располагаются стопкой друг над другом и образуют тилакоиды гран. Пластиды достигают окончательного размера (рис.4). Непосредственно из пропластид могут образовываться и бесцветные пластиды (лейкопласты-амилопласты).


Рис.4. Онтогенез хлоропластов


Лейкопласты чаще всего локализованы в клетках запасающих тканей. Подобно пропластидам они характеризуются слабо развитой ламеллярной структурой. Во многих случаях в лейкопластах ламеллы сохраняют связь с внутренней оболочкой. В строме лейкопластов располагаются крахмальные зерна, осмиофильные глобулы, белковые включения. Хромопласты — это, по-видимому, результат деградации хлоропластов, образовавшиеся за счет частичного разрушения ламеллярной структуры. Одновременно происходит образование осмиофильных глобул, содержащих каротиноиды. Эти глобулы располагаются сплошным слоем под оболочкой пластид.

В клетках растущих листьев пластиды размножаются путем деления. В листьях шпината при увеличении листа с 1 см до полного размера количество пластид на клетку возрастает с 50 до 500 штук. Процесс деления пластид ускоряется на свету. Особенное значение имеют красные и синие участки спектра, которые поглощаются хлорофиллом. Деление может происходить или на стадии пропластид (у высших растений), или на стадии уже сформировавшихся хлоропластов (у водорослей и папоротников). Пластиды делятся или путем возникновения поперечных перегородок, или, реже, путем почкования. Поперечные перегородки образуются за счет образования складок на внутренней мембране. До тех пор, пока складка внутренней мембраны не поделила тело пластид, наружная мембрана сохраняется и объединяет обе дочерние пластиды. Дальнейшее поведение наружной мембраны неясно. Она либо разрывается, либо образует складки. Таким образом, пластиды - самоудваивающиеся органеллы.

Большой интерес представляет вопрос о возникновении хлоропластов в клетке в процессе эволюции. Поскольку хлоропласта представляют собой относительно независимое от ядра образование, способное к делению, росту, дифференциации, возникла гипотеза о том, что на заре эволюции хлоропласты, так же как и митохондрии, представляли собой самостоятельные организмы. Согласно этой гипотезе хлоропласты возникли в результате симбиоза какого-то автотрофного организма (возможно, цианобактерии), способного трансформировать энергию солнечного света, с гетеротрофной клеткой. Пластиды и фотосинтезирующие прокариоты очень сходны между собой (кольцевая структура ДНК, размеры рибосом и др.). Согласно гипотезе, развиваемой рядом исследователей, способность к фотосинтезу возникла у прокариотов. Впоследствии гетеротрофные эукариотические клетки приобрели способность к фотосинтезу благодаря заглатыванию микробов-фотосинтетиков. Это событие (около 400 млн. лет назад) и привело к возникновению фотосинтезирующих водорослей (Маргелис, 1983). В этой связи интересно, что в 1969 г. было показано, что изолированные клетки млекопитающих способны заглатывать путем фагоцитоза выделенные из листьев хлоропласты. Захваченные клетками хлоропласты выживали на протяжении шести клеточных делений. При этом они сохраняли структуру и делились. Вновь выделенные из этих клеток хлоропласты не потеряли способности к фотосинтезу.


5.3.3. ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ХЛОРОПЛАСТОВ


Важным свойством хлоропластов является их способность к движению. Хлоропласта передвигаются не только вместе с цитоплазмой, но способны и самопроизвольно изменять свое положение в клетке. Скорость движения хлоропластов составляет около 0,12 мкм/с. Хлоропласты могут быть распределены в клетке равномерно, однако чаще они скапливаются около ядра и вблизи клеточных стенок. Большое значение для расположения хлоропластов в клетке имеют направление и интенсивность освещения. При малой интенсивности освещения хлоропласты становятся перпендикулярно к падающим лучам, что является приспособлением к лучшему их улавливанию. При высокой освещенности хлоропласты передвигаются к боковым стенкам и поворачиваются ребром к падающим лучам. В зависимости от освещения может также меняться и форма хлоропластов. При более высокой интенсивности света их форма становится ближе к сферической.

Основная функция хлоропластов — это процесс фотосинтеза.

В 1955 г. Д. Арнон показал, что в изолированных хлоропластах может быть осуществлен весь процесс фотосинтеза. Важно отметить, что хлоропласты имеются не только в клетках листа. Они встречаются в клетках не специализирующихся на фотосинтезе органов: в стеблях, колосковых чешуйках и остях колосьев, корнеплодах, клубнях картофеля и т. д. В ряде случаев зеленые пластиды обнаруживаются в тканях, расположенных не в наружных, освещенных частях растений, а в слоях, удаленных от света: в тканях центрального цилиндра стебля, в средней части луковицы лилейных, а также в клетках зародыша семени многих покрытосеменных растений. Последнее явление (хлорофиллоносность зародыша) привлекает внимание систематиков растений. Имеются предложения разделить все покрытосеменные растения на две большие группы: хлороэмбриофиты и лейкоэмбриофиты, содержащие и не содержащие хлоропласты в зародыше (М. С. Яковлев). Исследования показали, что структура хлоропластов, расположенных в других органах растения, так же как и состав пигментов, сходны с хлоропластами листа. Это дает основания считать, что они способны к фотосинтезу. В том случае, если они подвергаются освещению, по-видимому, в них действительно происходит фотосинтез. Так, фотосинтез хлоропластов, расположенных в остях колоса, может составлять около 30% от общего фотосинтеза растения. Позеленевшие на свету корни способны к фотосинтезу. В хлоропластах, находящихся в кожуре плода до определенного этапа его развития, также может идти фотосинтез. Согласно предположению А. Л. Курсанова, хлоропласты, расположенные вблизи проводящих путей, выделяя кислород, способствуют повышению интенсивности обмена веществ ситовидных трубок.


Вместе с тем роль хлоропластов не ограничивается их способностью к фотосинтезу. В определенных случаях они могут служить источником питательных веществ (Е. Р. Гюббенет). Хлоропласты содержат большое количество витаминов, ферментов и даже фито гормонов (в частности, гиббереллина и абсцизовой кислоты). В условиях, при которых ассимиляция исключена, зеленые пластиды могут играть активную роль в процессах обмена веществ. Известно, что присутствие листьев, помещенных в условия, исключающие фотосинтез (закрывание землей), улучшает рост растений. Показано благоприятное влияние листьев на процесс сращивания привоя и подвоя. Все сказанное еще раз подчеркивает многообразную роль, которую играют зеленые пластиды в жизни растительного организма.


5.4. ПИГМЕНТЫ ФОТОСИНТЕЗА


Для того чтобы свет мог оказывать влияние на растительный организм и, в частности, быть использованным в процессе фотосинтеза, необходимо его поглощение фоторецепторами-пигментами. Пигменты- это окрашенные вещества. Пигменты поглощают свет определенной длины волны. Непоглощенные участки солнечного спектра отражаются, что и обусловливает окраску пигментов. Так, зеленый пигмент хлорофилл поглощает красные и синие лучи, тогда как зеленые лучи в основном отражаются. Видимая часть солнечного спектра включает длины волн от 400 до 700 нм. Вещества, поглощающие весь видимый участок спектра, кажутся черными. Пигменты, сконцентрированные в пластидах, можно разделить на три группы: хлорофиллы, фикобилины, каротиноиды.


5.4.1. ХЛОРОФИЛЛЫ


Важнейшую роль в процессе фотосинтеза играют зеленые пигменты— хлорофиллы. Французские ученые Пелетье и Кавенту (1818) выделили из листьев зеленое вещество и назвали его хлорофиллом (от греч. «хлорос» — зеленый и «филлон» — лист). В настоящее время известно около десяти хлорофиллов. Они отличаются по химическому строению, окраске, распространению среди живых организмов. У всех высших зеленых растений содержатся хлорофиллы а и b. Хлорофилл с содержится в диатомовых водорослях, хлорофилл d — в красных водорослях. Кроме того, известны четыре бактериохлорофилла (a, b, c, d), содержащиеся в клетках фотосинтезирующих бактерий. В клетках зеленых бактерий содержатся бактериохлорофиллы с и d, в клетках пурпурных бактерий — бактериохлорофиллы а и b. Основными пигментами, без которых фотосинтез не идет, являются хлорофилл а для зеленых растений и бактериохлорофиллы для бактерий.

Впервые точное представление о пигментах зеленого листа высших растений было получено благодаря работам крупнейшего русского ботаника М. С. Цвета (1872—1919). Он разработал новый хроматографический метод разделения веществ и выделил пигменты листа в чистом виде. Хроматографический метод разделения веществ основан на их различной способности к адсорбции. Метод этот получил широкое применение. М. С. Цвет пропускал вытяжку из листа через стеклянную трубку, заполненную порошком — мелом или сахарозой (хроматографическую колонку). Отдельные компоненты смеси пигментов различались по степени адсорбируемости и передвигались с разной скоростью, в результате чего они концентрировались в разных зонах колонки. Разделяя колонку на отдельные части (зоны) и используя соответствующую систему растворителей, можно было выделить каждый пигмент. Оказалось, что листья высших растений содержат четыре пигмента — два хлорофилла (а и b) и два каротиноида (каротин и ксантофилл).


Хлорофиллы, так же как и каротиноиды, нерастворимы в воде, но хорошо растворимы в органических растворителях. Хлорофиллы a и b различаются по цвету: хлорофилл а имеет сине-зеленый оттенок, a хлорофилл b — желто-зеленый. Содержание хлорофилла а в листе примерно в три раза больше по сравнению с хлорофиллом b.


5.5. Химические свойства хлорофилла


По химическому строению хлорофиллы — сложные эфиры дикарбоновой органической кислоты — хлорофиллина и двух остатков спиртов — фитола и метилового. Эмпирическая формула — C55Н72O5N4Mg. Хлорофиллин представляет собой азотсодержащее металлорганическое соединение, относящееся к магнийпорфиринам


/ соон

МgН4ОН30С32

\СООН

В хлорофилле водород карбоксильных групп замещен остатками двух спиртов — метилового СН3ОН и фитола С2оН39ОН.

Хлорофилл b отличается тем, что содержит на два атома водорода меньше и на один атом кислорода больше (вместо группы СН3 группа – C= О

\ Н

В связи с этим молекулярная масса хлорофилла а — 893 и хлорофилла b — 907. В 1960 г. Вудворд осуществил полный синтез хлорофилла.

В центре молекулы хлорофилла расположен атом магния, который соединен с четырьмя атомами азота пиррольных группировок. В пиррольных группировках хлорофилла имеется система чередующихся двойных и простых связей. Это и есть хромофорная группа хлорофилла, обусловливающая поглощение определенных лучей солнечного спектра и его окраску. Диаметр порфиринового ядра составляет 10 нм, а длина фитольного остатка — 2 нм.

Расстояние между атомами азота пиррольных группировок в ядре хлорофилла составляет 0,25 нм. Интересно, что диаметр атома магния равен 0,24 нм. Таким образом, магний почти полностью заполняет пространство между атомами азота пиррольных группировок. Это придает ядру молекулы хлорофилла дополнительную прочность. Еще К. А. Тимирязев обратил внимание на близость химического строения двух важнейших пигментов: зеленого — хлорофилла листьев и красного — гемина крови. Действительно, если хлорофилл относится к магнийпорфиринам, то гемин — к железопорфиринам. Сходство это не случайно и служит еще одним доказательством единства всего органического мира.

Одной из специфических черт строения хлорофилла является наличие в его молекуле помимо четырех гетероциклов еще одной циклической группировки из пяти углеродных атомов — циклопентанона. В циклопентановом кольце содержится кетогруппа, обладающая большой реакционной способностью. Есть данные, что в результате процесса энолизации по месту этой кетогруппы к молекуле хлорофилла присоединяется вода.

Молекула хлорофилла полярна, ее порфириновое ядро обладает гидрофильными свойствами, а фитольный конец — гидрофобными. Это свойство молекулы хлорофилла обусловливает определенное расположение ее в мембранах хлоропластов. Порфириновая часть молекулы связана с белком, а фитольная цепь погружена в липидный слой. Извлеченный из листа хлорофилл легко реагирует как с кислотами, так и со щелочами. При взаимодействии со щелочью происходит омыление хлорофилла, в результате чего образуются два спирта и щелочная соль кислоты хлорофиллина. В интактном живом листе от хлорофилла может отщепляться фитол под воздействием фермента хлорофиллазы. При взаимодействии со слабой кислотой извлеченный хлорофилл теряет зеленый цвет, образуется соединение феофитин, у которого атом магния в центре молекулы замещен на два атома водорода.

Хлорофилл в живой интактной клетке обладает способностью к обратимому фотоокислению и фотовосстановлению. Способность к окислительно-восстановительным реакциям связана с наличием в молекуле хлорофилла сопряженных двойных связей с подвижными π-электронами и атомов азота с неподеленными электронами. Азот пиррольных ядер может окисляться (отдавать электрон) или восстанавливаться (присоединять электрон).

Исследования показали, что свойства хлорофилла, находящегося в листе и извлеченного из листа, различны, так как в листе он находится в комплексном соединении с белком. Это доказывается следующими данными:


1.Спектр поглощения хлорофилла, находящегося в листе, иной по сравнению с извлеченным хлорофиллом.


2. Хлорофилл невозможно извлечь абсолютным спиртом из сухих листьев. Экстракция протекает успешно, только если листья увлажнить или к спирту добавить воды, которая разрушает связь между хлорофиллом и белком.


3. Выделенный из листа хлорофилл легко подвергается разрушению под влиянием самых разнообразных воздействий (повышенная кислотность, кислород и даже свет).


Между тем в листе хлорофилл достаточно устойчив ко всем перечисленным факторам. Следует отметить, что хотя крупный русский ученый В. Н. Любименко и предлагал этот комплекс назвать хлороглобином, по аналогии с гемоглобином, связь между хлорофиллом и белком иного характера, чем между гемином и белком. Для гемоглобина характерно постоянное соотношение — на 1 молекулу белка приходится 4 молекулы гемина. Между тем соотношение между хлорофиллом и белком различно и претерпевает изменения в зависимости от типа растений, фазы их развития, условий среды (от 3 до 10 молекул хлорофилла на 1 молекулу белка). Связь между молекулами белка и хлорофиллом осуществляется путем нестойких комплексов, образующихся при взаимодействии кислотных групп белковых молекул и азота пиррольных колец. Чем выше содержание дикарбоновых аминокислот в белке, тем лучше идет их комплектование с хлорофиллом (Т. Н. Годнее). Белки, связанные с хлорофиллом, характеризуются низкой изоэлектрической точкой (3,7—4,9). Молекулярная масса этих белков порядка 68 тыс. Вместе с тем хлорофилл может взаимодействовать и с липидами мембран.

Важным свойством молекул хлорофилла является их способность к взаимодействию друг с другом. Переход из мономерной в агрегированную форму возник в результате взаимодействия двух- и более молекул при их близком расположении друг к другу. В процессе образования хлорофилла его состояние в живой клетке закономерно меняется. При этом и происходит его агрегация (А. А. Красновский). В настоящее время показано, что хлорофилл в мембранах пластид находится в виде пигмент-липопротеидных комплексов с различной степенью агрегации.


5.6. Физические свойства хлорофилла


Как уже отмечалось, хлорофилл способен к избирательному поглощению света. Спектр поглощения данного соединения определяется его способностью поглощать свет определенной длины волны (определенного цвета). Для того чтобы получить спектр поглощения, К. А, Тимирязев пропускал луч света через раствор хлорофилла. Часть лучей поглощалась хлорофиллом, и при последующем пропускании через призму в спектре обнаруживались черные полосы. Было показано, что хлорофилл в той же концентрации, как в листе, имеет две основные линии поглощения в красных и сине-фиолетовых лучах (рис. 6). При этом хлорофилл а в растворе имеет максимум поглощения 429 и 660 нм, тогда как хлорофилл b — 453 и 642 нм. Однако необходимо учитывать, что в листе спектры поглощения хлорофилла меняются в зависимости от его состояния, степени агрегации, адсорбции на определенных белках. В настоящее время показано, что есть формы хлорофилла, поглощающие свет с длиной волны 700, 710 и даже 720 нм. Эти формы хлорофилла, поглощающие свет с большой длиной волны, имеют особенно важное значение в процессе фотосинтеза.
1   2   3   4   5   6   7   8

Похожие:

№3. \"Фотосинтез\" iconФотосинтез
Фотосинтез процесс образования органических веществ из неорганических в хлоропластах зеленых растений под действием солнечного света,...
№3. \"Фотосинтез\" iconУрок биологии на тему «Фотосинтез»
Оборудование: компьютер, проектор, видеофильм «Фотосинтез», презентация «История фотосинтеза», раздаточный материал (задачи, стихи,...
№3. \"Фотосинтез\" iconРеферат содержит шесть глав
Общее представление о фотосистемах 16 Глава Генетика и экология фотосинтеза 20 Глава Зеленая архитектура 22 1 Сколько растениям солнца...
№3. \"Фотосинтез\" iconБиология Процесс Фотосинтез Комарова Кристина, 9 кл гимназии №397 им. Г. В. Старовойтовой, тел. 747-27-98 Научный Брицкая А. А
Фотосинтез – это процесс, с помощью которого зеленые растения, некоторые водоросли и микроорганизмы используют энергию солнечного...
№3. \"Фотосинтез\" iconКомплекс Гольджи Кристы Анаэробы Гликолиз Фотосинтез Ген Трансляция Профаза Цитоплазма Прокариоты

№3. \"Фотосинтез\" icon«Фотосинтез»
Цель: изучить процесс фотосинтеза, показать значение зеленых растений в жизни планеты
№3. \"Фотосинтез\" iconАвтотрофизм. Өсімдіктердің фотосинтез немесе хемосинтез арқылы ауадағы, топырақтағы және судағы анорганикалық заттармен қоректенуі
Автотрофтық автотрофизм. Өсімдіктердің фотосинтез немесе хемосинтез арқылы ауадағы, топырақтағы және судағы анорганикалық заттармен...
№3. \"Фотосинтез\" iconТема: "фотосинтез."
Максат: Кояшның җирдәге бөтен тереклек чыганагы булуы турындагы белемнәрне ныгыту
№3. \"Фотосинтез\" iconУрок на тему: фотосинтез
По учебнику В. П. Викторова, А. И. Никишова: «Биология, Растения. Грибы. Бактерии. Лишайники» 6 класс
№3. \"Фотосинтез\" iconТема: фотосинтез задачи
Оборудование: Растение, выдержанное в темноте, спиртовка, спички, спирт, йод, вода, лучинка
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©kzdocs.docdat.com 2012
обратиться к администрации
Документы
Главная страница